Wie kann man die Varianz berechnen? Genau dies sehen wir uns in den nächsten Abschnitten genauer an. Ein Beispiel bzw. eine Aufgabe wird dabei ausführlich vorgerechnet und erklärt. Natürlich erfahrt ihr auch noch, wofür man die Varianz überhaupt braucht. Dieser Artikel gehört zu unserem Bereich Mathematik.
Die Varianz ist ein Begriff aus der Statistik bzw. Wahrscheinlichkeitsrechnung oder Stochastik. Wozu dient die Varianz? Nun, die Varianz gibt die mittlere quadratische Abweichung der Ergebnisse um ihren Mittelwert an. Ein entsprechendes Beispiel wird dies gleich verdeutlichen. Zunächst sollte man jedoch noch folgendes Wissen. Um die Varianz zu berechnen, müssen wir vorher erst den Durchschnitt berechnen (arithmetisches Mittel sagen Mathematiker dazu). Hinweis: Mit der Varianz kann man im Anschluss auch noch die Standardabweichung berechnen.
Varianz berechnen:
In dieser Reihenfolge muss man vorgehen. Machen wir das an einem Beispiel.
Anne schreibt eine Woche lang auf, wie lange sie von zuhause zum Sport gebraucht hat: Am Montag waren es 8 Minuten, am Dienstag 7 Minuten, am Mittwoch 9 Minuten, Donnerstag 10 Minuten und Freitag 6 Minuten. Wie hoch ist die Varianz?
Lösung: Um die Aufgabe zu lösen, wenden wir den Plan von weiter oben an.
Schritt 1: Zunächst müssen wir den Durchschnitt berechnen. Dazu addieren wir zunächst alle Zeitangaben von Montag bis Freitag auf. Außerdem teilen wir dies durch die Anzahl der Tage, an denen Anne zum Sport ging. Da dies fünf Werte sind, teilen wir also durch 5. Dies sieht dann so aus:
Im Durchschnitt benötigt Anne also 8 Minuten um zum Sport zu gelangen.
Schritt 2: Mit dem Durchschnitt können wir nun die Varianz berechnen. Hinweis: Die Varianz gibt die mittlere quadratische Abweichung der Ergebnisse um ihren Mittelwert an. Um dies zu tun, nehmen wir wieder unsere fünf Werte vom Anfang (also 8, 7, 9, 10 und 6) und ziehen von diesen jeweils den Durchschnitt (8) ab. Dies müssen wir dann jeweils quadrieren (hoch 2) und die Summe bilden. Am Ende teilen wir noch durch die Anzahl der Werte, die wir ursprünglich genommen hatten, sprich wir teilen erneut durch 5.
Die Varianz - also die mittlere quadratische Abweichung - beträgt damit 2.
Hinweis: Neben der Varianz kann man noch die Standardabweichung berechnen. Wie dies funktioniert seht ihr im Artikel Standardabweichung berechnen. Dadurch wird oft auch klarer, dass die Varianz ein Zwischenschritt ist und man mit der Standardabweichung im Anschluss manchmal mehr anfangen kann.
Neben der Varianz gibt es noch weitere interessante Werte, wie zum Beispiel den Erwartungswert. Diesen und viele weitere Themen findet ihr in unserer Stochastik Übersicht bzw. Statistik Übersicht.
Weitere Links:
104 Gäste online
Verfügbare Fächer: